Toxic interactions between disulfiram, and some centrally acting drugs in rats

M. SHARKAWI^{*}, D. CIANFLONE, A. M. EL-HAWARI, Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, P.Q., Canada.

Recently, Smith & Shimizu (1976) have reported that, in the rat, the administration of disulfiram (350 mg kg⁻¹), 1 h before tranylcypromine stereoisomers (10 mg kg⁻¹) resulted in a toxic interaction between disulfiram and these drugs. We have observed a toxic interaction between disulfiram and morphine during a study designed to determine the influence of disulfiram, a dopamine- β -hydroxylase inhibitor (Goldstein, 1966), on the pharmacological activity of morphine.

Male Sprague-Dawley rats, 180-250 g, housed in temperature-regulated quarters ($23-25^{\circ}$) on a 12 h lightdark cycle (lights on from 7.00 to 19.00) had free access to food and water. They were given either vehicle (0.5%carboxymethylcellulose, CMC) or disulfiram in the vehicle followed 1 h later by a drug at the dose and by the route shown in Table 1. The number of rats dying in 24 h was recorded. After morphine, death of the disulfiram-treated rats usually occurred between 4 and 6 h and seemed to be due to respiratory failure, the animals exhibiting intermittent convulsions during the 30 min preceding death.

Disulfiram also enhanced the toxicity of meperidine, (+)-amphetamine and barbitone, death in the meperidine and (+)-amphetamine groups occurring within 2 h of the drug's administration after an intense episode of convulsions that lasted about 1 h in some animals. Animals that died in the barbitone group did not regain consciousness before death. Survivors slept at least twice as long as their controls (barbitone—CMC, 163 \pm 20 min; barbitone—disulfiram, more than 470 min). Stripp, Greene & Gillette (1969) observed a 3-fold increase in hexobarbitone sleeping time in rats treated with disulfiram (200 mg kg⁻¹, i.p.) 2 h before the administration of hexobarbitone.

A variety of drug-metabolizing enzymes have been shown to be impaired by disulfiram (Zemaitis & Greene, 1976a, b). However, we find it unwise to propose that

* Correspondence.

Table 1. Effect of pretreatment with disulfiram 400 mg kg^{-1} on the toxicity of morphine, meperidine, (+)amphetamine and barbitone in the rat. Disulfiram was injected intraperitoneally 1 h before the injection of drugs. P value was calculated by Fisher's exact probability method as described by Goldstein (1964). (+)-Amphetamine-treated rats were placed individually in meshed-wire cages $15 \times 30 \times 15$ cm. All other rats were placed in groups (not more than 6 to a group) in round meshed-wire cages 20 cm high with a diameter of 22 cm.

-			
Pretreatment dose mg kg ⁻¹ ,	Treatment i.p. dose mg kg ⁻¹	No. rat dead in 24 h	Mortality %
CMC 0.5% 2 ml	Morphine sulphate	1/17	6.0
Disulfiram	Morphine sulphate	9/18	50.0 P = 0.004
Disulfiram 400	Saline 2 ml, s.c.	0/18	0.0
Disulfiram	Meperidine HCl	3/10	30.0 P = 0.105
CMC 0.5% 2 ml	Meperidine HCl 50, i.p.	0/10	0.0
Disulfiram	Meperidine HCl	9/10	90.0 P = 0.027
CMC 0.5% 2 ml	Meperidine HCl 100, i.p.	4/10	40.0
Disulfiram	(+)-Amphetamine	6/6	100.0 P = 0.001
CMC 0.5% 2 ml	(+)-Amphetamine sulphate 80, i.p.	0/6	0 ∙0
Disulfiram 400	Barbitone sodium	4/6	P = 0.03
CMC 0.5% 2 ml	Barbitone sodium 200, i.p.	0/6	Ō•0

impairment of biotransformation may be an underlying mechanism for these toxic interactions. Such a proposition cannot be advanced in light of the occurrence of a toxic interaction between disulfiram and barbitone, a drug that is excreted virtually unchanged in the rat (Williams, 1959).

The work was supported by research funds of the University of Montreal.

July 25, 1977

REFERENCES

GOLDSTEIN, A. (1964). Biostatistics, an Introductory Text, 1st edition, pp. 110-111, New York: the Macmillan Company.

GOLDSTEIN, M. (1966). Pharmac. Rev., 18, 77-82.

SMITH, D. F. & SHIMIZU, M. (1976). J. Pharmac., 28, 858

STRIPP, B., GREENE, F. E. & GILLETTE, J. R. (1969). J. Pharmac. exp. Ther., 170, 347–354.

WILLIAMS, R. T. (1959). Detoxification Mechanisms, 2nd edition, p. 596, London: Chapman and Hall.

ZEMAITIS, M. A. & GREENE, F. E. (1976a). Biochem. Pharmac., 25, 453-459.

ZEMAITIS, M. A. & GREENE, F. E. (1976b). Ibid., 25, 1355-1360.